

A new quaternary phase in the Nd-Co-B-Si system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 L457

(http://iopscience.iop.org/0953-8984/5/38/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 01:50

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 5 (1993) L457-L460. Printed in the UK

LETTER TO THE EDITOR

A new quaternary phase in the Nd–Co–B–Si system

E Wu[†], G H J Wantenaar[†], S J Campbell[†] and H S Li[‡]

Department of Physics, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia
\$ School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia

Received 28 July 1993

Abstract. A new compound of overall composition $NdCo_8B_3Si$ with a tetragonal structure has been synthesized by arc-melting, and identified by x-ray powder diffraction and analytical electron microscopy.

There are several phases in the Nd–Co–B system including NdCo₄B, NdCo₂B₂, NdCo₄B₄, NdCo₁₂B₆ etc [1]. In the Nd–Co–Si system a phase of NdCo₉Si₂ has been reported [2]. However, no quarternary phases have been reported in an Nd–Co–B–Si system. A new phase with an overall composition of NdCo₈B₃Si has been discovered. This is the first compound found in the Nd–Co–B–Si system, which fills a gap between the Nd–Co–B system and the Nd–Co–Si system, and provides scope for the synthesis of a range of related compounds. The results of x-ray powder diffraction and analytical electron microscopy of the new phase are presented in this paper.

Figure 1. X-ray (Cu K α) powder diffraction pattern of NdCo₈B₃Si; the \bullet on the peaks indicates that they have been indexed.

The sample of NdCo₈B₃Si was prepared from lumps of 99.99% Nd, 99.998% Co, 99.5% B and 99.7% Si by arc-melting and annealing at 900 °C for three weeks. The weight loss during the sample preparation was $\leq 1\%$. The density of the sample was determined as 7.7 ± 0.3 g cm⁻³. Further details of the preparation procedure can be found in our previous paper [3]. The x-ray powder diffraction studies were made using Cu K α radiation in a

Philips diffractometer. The powder pattern was indexed by a PowdMult indexing program [4]. A standard transmission electron microscope thin-film specimen was prepared using an electropolisher. The electron microscopy was performed on a Hitachi H800 analytical electron microscope.

Figure 2. SEM image of the NdCo₈B₃Si film (×100).

The x-ray powder diffraction pattern of NdCo₈B₃Si is shown in figure 1. The corresponding observed and indexed d-spacings and their intensities are listed in table 1. The x-ray diffraction pattern was indexed on the basis of a tetragonal unit cell. As shown in figure 1 and table 1, nearly all the measured reflections are well indexed, and there is very good agreement between the observed and calculated interplanar spacings. The tetragonal lattice parameters for NdCo₈B₃Si calculated from the indexing are $a = 11.184(\pm 0.005)$ Å, and $c = 7.953(\pm 0.005)$ Å. The relation between the a axis and c axis ($a/c \simeq \sqrt{2}$) suggests that the tetragonal unit-cell could be derived from two cubic cells with their two [110] axes alternated into the a axis. The appropriate lattice parameter (a = 7.2986 Å) and the similarity in the positions of the strongest peaks (2.201 Å (311) and 2.580 Å (220)) for the cubic NdCo₂ (space group, Fd3m) indicates that the arrangement of the dominant component Co in a derived tetragonal NdCo₈B₃Si unit cell could in general follow that of the Co in the corresponding two cubic NdCo₂ unit cells. As no systematic absences have

Measured		Calculated	
Ì/I ₀	d (Å)	d (Å)	hki
8.	4.585	4.574	201
12	3.978	3.976	002,220
9	3.556	3.553	1 1 2, 2 2 1
4	3.246	3.241	202,311
7	2.809	2.804	222,400
7	2.719	2.720	302,410
23	2.651	2.651	003
3	2,581	2.580	103
16	2.514	2.514	113
11	2.500	2.501	331,420
4	2.445	2.446	322
87	2.396	2.395	203
58	2.384	2.386	421
100	2.290	2.287	402
4	2.248	2.241	412
13	2.200	2.202	223,332
6	2.162	2.160	303
12	2.123	2.121	313
13	2.117	2.1 17	422,511
7	2.010	2.010	3 2 3, 5 2 1
35	1.989	1.988	004
13	1.955	1.958	1 0 4, 5 0 2, 4 3 2
49	1.927	1.928	114,403
9	1.894	1.896	413
17	1.869	1.869	333
13	1.818	1.819	423
24	1.735	1.733	314
14	1.726	1.726	532,621
11	1.621	1.620	4 0 4, 6 2 2
11	1.591	1.591	005,334
6	1.555	1.554	424,533,711
13	1.530	1.530	205
8	1.521	1.522	641
14	1.401	1.401	444,800
7	1.383	1.382	405,534
3	1.358	1.359	604,553,713
13	1.343	1.342	425
14	1.338	1.339	643
25	1.326	1.326	006
16	1.322	1.321	624
5	1.312	1.312	544
4	1.289	1.290	831,206,515
4	1.284	1.284	822

Table 1. The x-ray powder diffraction data for NdCo₈B₃Si.

been observed in the indexing, this kind of arrangement will lead to the possible space group of $P\overline{4}m2$ or $P\overline{4}$ for NdCo₈B₃Si. Further analysis of the structure is in progress.

The morphology (figure 2) of the $NdCo_8B_3Si$ film observed in the SEM mode shows a typical single-phase feature of homogeneous grains, with grain boundaries readily observed due to preferential etching within the grains. The energy dispersive spectrum (EDS) analysis of the film shows no detectable difference in composition of Nd and Co between different

Figure 3. Electron diffraction pattern of NdCo₈B₃Si with the beam directed along the zone axis [010].

grains and between grain and boundaries. Analysis of EDS data provides qualitative agreement with the overall compositional ratio 1:8 between Nd and Co respectively, as determined by stoichiometry during sample preparation. Si is also detected but its quantity can not be defined.

Selected area electron diffraction (SAD) analyses confirm that the grains are single crystals of identical phase. The diffraction patterns obtained from SAD of the single crystals are indexed very well with the tetragonal unit cell. Figure 3 shows an electron diffraction pattern taken with the beam directed along the zone axis [010], revealing diffraction from both (100) and (001) planes. Using superposed Cr film as a standard, the lattice parameters of the unit cell were calculated as $a = 11.15(\pm 0.06)$ Å and $c = 7.95(\pm 0.03)$ Å. The shortest reciprocal axis with spacing of 11.15 Å (100) observed in SAD is in good agreement with the corresponding a axis (11.184 Å), the widest d-spacing calculated from XRD, and indicates the consistency between x-ray and electron diffraction analyses.

The authors thank Mr X L Zhao and Dr A V J Edge for assistance in sample preparation. This work is supported by a grant from the Australian Research Council.

References

- [1] Li H S and Coey J M D 1991 Handbook of Magnetic Materials vol 6, ed H J Buschow (Amsterdam: Elsevier)
- [2] Bodak O I and Gladyshevskii E J Dopov. Akad. Nauk. Ukr. RSR A 5 452-455
- [3] Campbell S J, Cadogon J M, Zhao X L and Wu E 1993 Hyperfine Interact. at press
- [4] Wu E 1989 J. Appl. Crystallogr. 22 506-510